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Abstract

It is well-known that Riemann Sums can be used to approximate certain definite integrals. In
this paper, we will show how to use the idea of Riemann Sums to evaluate certain limits. It is
done by expressing the desired limit as the limit of a suitable Riemann Sum. Several examples are
given, as well as some exercises that are left for the reader to try on his own. An important aspect
of the paper is that it encourages use of computer algebra systems such as Maple, at the same
time emphasizing the importance of computation by hand.

In this paper, we will illustrate how to use the idea of Riemann Sums to evaluate certain difficult
limits in calculus. The method we are about to discuss, even though not entirely new, is missing from
most modern calculus texts (see [5]). It is worthwhile to recall the idea of Riemann Sums first. The
Riemann Sums in general can be defined for a larger class of functions, but for simplicity we will
just consider a montonically increasing nonnegative function f(x) defined on a closed interval [0, a],
where a is a positive real number. We know that the area bounded by the graphs of y = f(x), x = 0,
x = a, and y = 0 is given by the following definite integral:

Area =

∫ a

0

f(x) dx (1)

Let us now divide the interval [0, a] into n subintervals of equal length a/n, where n is any positive
integer. One can construct two types of rectangles, using these subintervals as bases. The first kind
has heights given by f((i− 1)a/n), where i = 1, 2, . . . , n. As given in Figure 1, the sum of the
areas of these rectangles is called a Riemann Lower Sum of the function f(x) over the interval [0, a].
Similarly, a second kind of rectangles have heights given by f(ia/n), where i = 1, 2, . . . , n. As given
in Figure 2, the sum of the areas of these rectangles is called a Riemann Upper Sum.
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Figure 1: Riemann lower sums.
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Figure 2: Riemann upper sums.

One central idea of integral calculus is that both the Riemann Lower Sum, and the Riemann Upper
Sum are approximations for the area under the graph of y = f(x) (see [3] and [4]):

Area =

∫ a

0

f(x) dx ≈
n∑

i=1

a

n
f

(
a i

n

)
Riemann Upper Sum

Area =

∫ a

0

f(x) dx ≈
n∑

i=1

a

n
f

(
a (i− 1)

n

)
Riemann Lower Sum

For larger and larger n values, the above Riemann Sums will give better approximations for the area.
More precisely, the limit of any of the Riemann Sums as n → ∞ is equal to the true area under the
graph.

Area =

∫ a

0

f(x) dx = lim
n→∞

n∑
i=1

a

n
f

(
a i

n

)
(2)

Area =

∫ a

0

f(x) dx = lim
n→∞

n∑
i=1

a

n
f

(
a (i− 1)

n

)
(3)

The above Figures 1 and 2 only display nonnegative monotonically increasing functions. The same
ideas can equally be used for nonnegative monotonically decreasing functions as well.

We will now show how to use the idea of Riemann Sums to calculate some interesting limits.

Example 1 Evaluate

lim
n→∞

(
1

n
+

1

n+ b
+

1

n+ 2b
+ · · ·+ 1

n+ b(n− 1)

)
, where b is a positive real number.
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The idea is to rewrite the above limit as the limit of some Riemann Sum. First, observe the following:(
1

n
+

1

n+ b
+

1

n+ 2b
+ · · ·+ 1

n+ b(n− 1)

)
=

n∑
i=1

1

n+ b (i− 1)

=
n∑

i=1

1

n

(
1

1 + b (i−1)
n

)

=
1

b

n∑
i=1

b

n

(
1

1 + b (i−1)
n

)
.

Thus, our problem is equivalent to finding

lim
n→∞

1

b

n∑
i=1

b

n

(
1

1 + b (i−1)
n

)
=

1

b
lim

n→∞

n∑
i=1

b

n

(
1

1 + b (i−1)
n

)

By comparing with equation (3), one can see that the quantity

lim
n→∞

n∑
i=1

b

n

(
1

1 + b (i−1)
n

)

represents the limit of the Riemann Lower Sum of the function f(x) = 1
(1+x)

over the interval [0, b].

Thus it is equal to the definite integral
∫ b

0
1

1+x
dx, which can be calculated by elementary calculus

(see [3] and [4]):

lim
n→∞

1

b

n∑
i=1

b

n

(
1

1 + b (i−1)
n

)
=

1

b

∫ b

0

1

1 + x
dx

=
ln(1 + b)

b

Thus, the required limit is equal to ln(1 + b)/b.

Example 2 Evaluate

lim
n→∞

n2

(
1

n3 + 13
+

1

n3 + 23
+

1

n3 + 33
+ · · ·+ 1

n3 + n3

)
.

First note that

n2

(
1

n3 + 13
+

1

n3 + 23
+

1

n3 + 33
+ · · ·+ 1

n3 + n3

)
=

n∑
i=1

1

n

1[
1 +

(
i

n

)3
] .
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Therefore, equation (2) implies that the required limit is equal to the definite integral of the function
f(x) = 1/(1 + x3) over the interval [0, 1], calculated as follows:

lim
n→∞

n∑
i=1

1

n

1[
1 +

(
i

n

)3
] =

∫ 1

0

1

1 + x3
dx

=
ln 2

3
+

√
3 π

9

The above integral can be either computed by hand, or by using a suitable computer algebra system
(CAS). For example, the following command in Maple can be used to compute the required integral
(see [1], [6] and [7] ):

> int(1/(1+xˆ3), x = 0 .. 1)

Example 3 The reader is now encouraged to prove the following:

lim
n→∞

n3

(
1

n4 + 14
+

1

n4 + 24
+

1

n4 + 34
+ · · ·+ 1

n4 + n4

)
=

√
2

8
ln(2 +

√
2)−

√
2

8
ln(2−

√
2) +

√
2π

8

Example 4 Calculate

lim
n→∞

(
1m + 2m + 3m + 4m + · · ·+ nm

nm+1

)
where, m 6= −1 is a real number.

Using methods similar to above, we can perform the calculation below:

lim
n→∞

(
1m + 2m + 3m + 4m + · · ·+ nm

nm+1

)
= lim

n→∞

1

n

n∑
i=1

(
i

n

)m

=

∫ 1

0

xm dx

=
1

m+ 1

Example 5 The reader is also encouraged to calculate the following limit:

lim
n→∞

1 +
(

4
n

)1/n
+
(

27
n2

)1/n
+
(

256
n3

)1/n
+ · · ·+

(
mn

nn−1

)
nn+1/n

Example 6 Evaluate

lim
n→∞

n
√
f (1/n) f (2/n) f (3/n) · · · f (n/n)
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where f(x) is any function such that the integral
∫ 1

0
ln f(x) dx is convergent. Let

u = n
√
f (1/n) f (2/n) f (3/n) · · · f (n/n).

Taking ln of both sides, we obtain

lnu =
1

n

[
n∑

i=1

ln f (i/n)

]
.

Therefore, by methods described before, it follows that

lim
n→∞

lnu =

∫ 1

0

ln f(x) dx

This implies that the required limit is equal to

lim
n→∞

u = e
∫ 1
0 ln f(x) dx

We will record the result as follows:

lim
n→∞

n
√
f (1/n) f (2/n) f (3/n) · · · f (n/n) = e

∫ 1
0 ln f(x) dx (4)

Example 7 Using the above Example 6, the reader can show the following identities:

lim
n→∞

n
√
e1/n · e2/n · e3/n · · · en/n =

√
e,

lim
n→∞

1

n

√(
1
n

)m · ( 2
n

)m · ( 3
n

)m · · · (n
n

)m = m
√
e,

lim
n→∞

2n

(2n)!!
= e,

lim
n→∞

1

n

√(
1
n

)1/n ·
(

2
n

)2/n ·
(

3
n

)3/n · · ·
(

n
n

)n/n

= 4
√
e,

lim
n→∞

1

2n

√(
1

n

)
·
(

2

n

)
·
(

3

n

)
· · ·
(n
n

) =
√
e,

lim
n→∞

1

n

√
sin
( π

2n

)
· sin

(
2π

2n

)
· sin

(
3π

2n

)
· · · sin

(nπ
2n

) = 2.

Example 8 Evaluate

lim
n→∞

n
√
n!

n
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We will compute this limit using equation (4) with f(x) = x:

lim
n→∞

n
√
n!

n
= lim

n→∞

n
√

1 · 2 · 3 · 4 · · ·n
n

= lim
n→∞

n

√
1

n
· 2
n
· 3
n
· · · n

n

= e
∫ 1
0 ln x

=
1

e

The limit in this example can also be calculated using the following command in Maple:

>limit(factorial(n)ˆ(1/n)/n, n = infinity)

Though Maple uses sophisticated algorithms for finding limits, we cannot expect Maple to calcu-
late any type of limit. In an attempt to calculate the limit

lim
n→∞

(
1m + 2m + 3m + 4m + · · ·+ nm

nm+1

)
,

in Example 4, the following Maple command does not produce an answer:

>limit((sum(kˆm, k = 1 .. n))/nˆ(m+1), n = infinity)

In this paper, we have shown a method of calculating certain limits via suitable Riemann Sums.
In some cases we were able to perform the calculation by hand, but in other cases, the calculation was
facilitated by a CAS. However, we hope that the paper shed some light into the limitations of a CAS
as illustrated by Example 4.
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